

Biomethane + CNG hybrid: a reduction by more than 80% of greenhouse gases emissions compared to gasoline

IGRC 2011, Seoul – Friday 21st October 2011

Olivier BORDELANNE

GDF SUEZ - Research & Innovation Division - CRIGEN

■ What do we mean by sustainable mobility?

What do we mean by sustainable mobility?

What do we mean by sustainable mobility?

Sustainable mobility... one possible definition

Mobility could be defined as a transport policy which tries to combine:

- Accessibility
- Economic progress
- Environmental objectives
- Sustainable aspects

In order to develop sustainable mobility/greener transport, the chosen action plan focuses on:

- Technological innovation
- Organizational innovation
- Services & usages innovation

At a country/territory scale, the idea is to bring <u>a real mix of</u> <u>solutions</u> in order to optimize and to adapt, at each time, the combination <u>fuel/vehicle/infrastructures</u> to the mobility needs.

■ Why do we need sustainable mobility/greener transport?

Road transport sector – 4 key challenges (1/2)

1st Challenge: CO₂ emissions reduction → Strong constrains by 2020 all around the world

2nd Challenge: Pollutants emissions reduction → ex. EU: 4 regulated pollutants (Euro norms)

- Nitrogen oxides (NOx),
- Hydrocarbons (HC),
- Carbon monoxide (CO),
- Particulates (PM)

Road transport sector – 4 key challenges (2/2)

3rd Challenge: Necessary energetic diversification

- Road transports represent **51% of the worldwide oil-products consumption** (Source: IEA-2009).
- Energy consumption from transport sector should **increase by +30%** between 2010 and 2030 (Source: IEA-2009).
- Road transport sector relies at 98% to oil-derived fuels.
- Worldwide automotive park could increase by a factor 3 by 2050 (Source: IEA-2009).

4th Challenge: High instability on oil market → Direct impact on fuels costs

Fuels costs between 2000-2010 in France:

• Gasoline: +22,2%

Gasoil: +31,8%

LPG: +40,4%

Possible solutions to reduce CO₂ and local pollutants emissions

Engines & Technologies

- Diesel engines
- Gasoline Direct injection
- "Downsizing"
- Continuous Variation Transmission (CVT)
- Stop & Start
- Hybrid vehicles
 - Hybridization of gasoline/diesel engines
 - Hybridization of alternative fuels engines
- Electrical Vehicles (EVs)
- Fuel Cell Vehicles (FCVs)

Source: CCFA- Dossier émissions de CO₂ (2008)

□ CNG/Biomethane – A greener transport solution

CNG/Biomethane a greener transport solution ...part of the "City of Tomorrow"

BY PEOPLE FOR PEOPLE

Waste treatment/valorisation (water, organic waste, biogas, etc.)

(CNG, biomethane, hybrids, EVs etc.)

Buildings of tomorrow (positive energy buildings, Ren. E, etc.)

Energy production from biomass

Methanisation/gasification: different maturities

BY PEOPLE FOR PEOPLE

Anaerobic digestion and gasification are complementary processes for the production of green gas/biomethane (different resources and maturity).

IGRC ■ Biogas - The European case in 2009 (Eurobserv'er 2010) GOF SUCCE

- ~97 TWh/yr of biogas produced in Europe
- Mainly converted into **heat** and power
- Fast development of production of biomethane for vehicle fuel and injection into natural gas grids
- About 60 biomethane injection operations in Europe
- Mainly in Germany, Switzerland, Sweden, the Netherlands and Austria

Sewage sludge biogas

Others (e.g. agricultural biogas)

■ Impact of biogas composition on the engine behaviour

Impact of biogas composition on the engine behaviour (1/3)

Objectives of the tests

→ Determine the **impact of the biogas composition (upgrading level)** on the operation, performances and emissions of a 4-stroke, 6 cylinders, 9.36L HD natural gas engine;

→CO₂, CH₄ and N₂ compositions have been modified

Testing conditions

- → H₂O, particles, siloxanes and VOCs are **supposed to be eliminated**;
- → Two kinds of biogas have been tested:
 - Biogas from methanisation;
 - Landfill biogas.
- → Biogas has been tested "pure" (100%) or "blended" with natural gas.

Impact of biogas composition on the engine behaviour (2/3)

Biogas compositions tested

	Volumic composition (%)					PCI
	CH₄	C₂H ₆	C₃H ₈	N_2	CO ₂	kWh/m³(n)
Reference gases						
G _{REF}	91.5	5.5	2	1	91.5	10.62
G _{REF} + biogas from methanisation						
70%G _{REF} + 30% biogas	80.55	3.85	1.4	1.3	12.9	9.08
50%G _{REF} + 50% biogas	73.25	2.75	1	1.5	21.5	8.05
30%G _{REF} + 70% biogas	65.95	1.65	0.6	1.7	30.1	7.03
G _{REF} + landfill biogas						
70%G _{REF} + 30% biogas	76.05	3.85	1.4	9.7	9	8.63
50%G _{REF} + 50% biogas	65.75	2.75	1	15.5	15	7.31
30%G _{REF} + 70% biogas	55.45	1.65	0.6	21.3	21	5.98
Biogas (100%)						
Methanisation	55	0	0	2	43	5.48
	40			30	30	3.99

G_{REF}: Natural Gas reference

Impact of biogas composition on the engine behaviour (3/3)

Main results

- → The engine does not operate when fuelled with a gas (CNG + biogas) containing more than 61% (% weight) of inert compounds (CO₂ + N₂);
- → Gases have to contain a minimum level of hydrocarbons (CxHy): > 45% (% weight);
- → Raw biogases (non purified) are excluded.
- → Slightly purified biogases have to be used in mixture with CNG in order to get engines running properly;
- → The mixture (biogas + CNG) does not bring to any significant increase of the pollutants emissions.

Only dedicated engines running under « lean » conditions could accept partially upgraded biogas:

- ➤ With such engines, CNG blended with 70% (% vol.) of not upgraded biogas could be used;
- > Lower levels of hydrocarbons in the mixtures (i.e. less than 45% weight) could be used.

□ Biomethane - Well to wheels performances in terms of GHG emissions

Biomethane - Well to wheels performances in terms of GHG emissions (1/4)

Partnership between GDF SUEZ, I FP EN

System Description

- Adaptation of the original gasoline engine to CNG
- No modification of the energy management strategy system
- Gas cylinders integrated underneath the chassis
- Autonomy: 250km

Performances

- 78 g CO₂/km* (-25% vs. gasoline version) (* on NEDC cycle)
- Comply with EURO 4 standards
- Gold medal to Bibendum Challenge

Biomethane - Well to wheels performances in terms of GHG emissions (2/4)

Objectives of the study

- → To assess the potential of CNG and biomethane in terms of GHG emissions reduction;
- → Comparison, on a well to wheels basis, between gasoline, CNG, biomethane.

Study assessments

Gasoline engines

Conventional ICE: data based on the Fiat BRAVO.

Hybrid powertrain: data based on the Toyota PRIUS II.

Dedicated CNG engines/vehicles

Conventional ICE: data based on the Fiat BRAVO CNG.

Hybrid powertrain: data based on the CNG Toyota PRIUS II prototype.

The fuels considered:

- Conventional gasoline (representative of a European average),
- o Compressed Natural Gas,
- o Biomethane from municipal waste & from dedicated crops (wheat, barley and maize).

Biomethane - Well to wheels performances in terms of GHG emissions (3/4)

Study assessments

- The fuel / biofuel production (incl. raw materials extraction or production), intermediary transport steps and conversion into the final fuel,
- The transport and distribution of the fuel from production site to the end users,
- The use of fuels in vehicles.
- The following GHG emissions associated to each fuel production chain:

Fuel pathway	WTT GHG emissions (g CO _{2 eq.} /MJ)			
Conventional gasoline	12.5			
CNG vehicle				
Current EU-mix (1000 km)	8.7			
Piped (4000 km)	14.5			
Biomethane				
From municipal organic waste (MOW)	-39.5			
From dedicated crops				
Wheat (whole plant)	-34.8			
Barley+Maize (double cropping)	-31.5			

Biomethane - Well to wheels performances in terms of GHG emissions (4/4)

When a CNG hybrid vehicle is fuelled by 100% of biomethane the greenhouse gases emissions are reduced by -86%*

(*in comparison to a gasoline vehicle)

Conclusions & perspectives

Conclusions & perspectives

From a technical point of view:

- Tests have shown that **slightly upgraded biogas** can be directly used as a fuel, if **blended** with natural gas.
- With dedicated CNG engines, the development of new engine technologies (lean CNG combustion) may authorize the use of natural gas blended with 70% volume of not upgraded biogas.

From an environmental point of view:

- A simplified environmental assessment confirms the relevance of using CNG and biomethane as fuels, in terms of GHG emissions reduction;
- GHG emissions from CNG vehicles may be significantly lower than the emissions of gasoline vehicles: around 17% lower in the case of dedicated CNG vehicles and up to 51% lower in the case of hybrid CNG vehicles;
- GHG emission levels are lowered by 86% in the case of the Toyota Prius CNG Hybrid prototype fuelled by biomethane produced from waste.

Thank you for your attention!

BY PEOPLE FOR PEOPLE

Contact: olivier.bordelanne@gdfsuez.com